Machine Learning at the Extreme: Teaching AI to Sail

AI &COGNITIVE SYSTEMS FORUM

CONNECTED TRANSPORT

MANUFACTURING

HEALTHCARE

ENERGY AND UTILITIES

BUILDINGS & INFRASTRUCTURE

OPEN INDUSTRY

ENABLING IoT

Machine Learning at the Extreme: Teaching AI to Sail

AI & COGNITIVE SYSTEMS FORUM | 29-31 OCTOBER 2019

Jack Trigger Trigger Racing Director and Skipper

Eric Topham T-DAB CEO and Data Science Director

Pedro Baiz WisConT Co-founder and CTO

Stanislas Hannebelle Department of Computing, Imperial College London MSc Student

Roman Kastusik The Data Analysis Bureau Data Scientist

and a

Sailing friends thinking about ML

AI & COGNITIVE SYSTEMS FORUM | 29-31 OCTOBER 2019

Supervised ML – learning by example

Unsupervised ML – finding the structure of data

Reinforcement Learning – Free interraction with the environment

- The concept is derived from animal behaviour
 - Agent is given all the actions it could perform and is placed in the environment which would reward him for choosing better actions

Reinforcement Learning – Free interraction with the environment

AI & COGNITIVE SYSTEMS FORUM | 29-31 OCTOBER 2019

Defining Reinforcement Learning for Sailboat Steering

Difficulty of Sailing as an RL 'game':

- There are changes of the environment out of our control weather
 - Can be anticipated, but cannot be influenced
 - Can have both positive and negative effects
- Rudder movement is continuous
- Rudder steering is not the only, in fact, not even the main action

Defining Reinforcement Learning for Sailboat Steering

Digital Twin of Concise 8

Deep Deterministic Policy Gradient

Defining Supervised Learning for Sailboat Steering

The general objective is to predict the optimal rudder angle.

Here, the supervised learning approach is based on the following assumption: The optimal rudder angle is the one that would have been chosen by Jack Trigger.

Using (labeled) historical data of Jack Trigger in race navigation and supervised learning models like recurrent neural networks, it is possible to predict the rudder angle that would have been chosen by Jack Trigger

Objective:

Given the actual state of the boat and thanks to historical data, predicting the rudder angle that would have been chosen by Jack Trigger for t+1

RACING Imperial College

Dataset Presentation

Feature Name	Feature Description	Range	Applied Normalization
Air_temp	Temperature of the air	[0,30]	Min-Max
AWA	Apparent Wind Angle	[-180,180]	Cos and Sin
AWS	Apparent Wind Speed	[0,50]	Min-Max
Current_direction	Direction of the current	[0,360]	Cos and Sin
Current_speed	Speed of the current	[0,15]	Min-Max
Heading_Mag	Magnetic heading of the boat	[0,360]	Cos and Sin
Heading_True	True heading of the boat	[0,360]	Cos and Sin
Heading_ov_ground	Heading over ground of the boat	[0,360]	Cos and Sin
Latitude	Latitude	[-90,90]	Max-Abs
Longitude	Longitude	[-180,180]	Cos and Sin
Yaw	1 st Tait-Bryan angle	[-180,180]	Cos and Sin
Pitch	2 nd Tait-Bryan angle	[-20, 20]	Max-Abs
Roll	3 rd Tait-Bryan angle	[-60,60]	Max-Abs
Speed_ov_ground	Speed over ground	[0,25]	Min-Max
Speed ov surface	Speed over surface	[0,25]	Min-Max
TWA	True Wind Angle	[-180,180]	Cos and Sin
TWD	True Wind Direction	[0,360]	Cos and Sin
TWS	True Wind Speed	[0,40]	Min-Max
VMG	Velocity Made Good	[0,25]	Min-Max
Rudder	Rudder Angle	[-50,50]	Max-Abs

DRHEAM CUP 2018 – Double-handed professional race
64 hours – 20 Features
95% of the Rudder has been done by Jack Trigger and his teammate

Supervised Learning Model

Data Cleaning (Tack Detection...) Feature Normalisation Long Short-Term Memory vs Gated Reccurent Unit Bayesian Optimisation to set hyperparameters Evaluation of performances

WISCONT

Imperial College

TRIGGER RACING

 T_{1}

WISCONT 云图智联 RACING Imperial College

Project Thanks and Acknowledgements

Professor Julie McCann

Professor Pieter Adrians

NKE Marine Electronics

Microsoft (UK)

Imperial College London

Any Questions?

THE DATA ANALYSIS BUREAU

DIGITALIZING INDUSTRIES

COME JOIN US!

FOR MORE INFO VISIT www.iotsworldcongress.com