Leading Edge – Connected Railways Use Case

CONNECTED TRANSPORT

MANUFACTURING

HEALTHCARE

ENERGY AND UTILITIES

BUILDINGS & INFRASTRUCTURE

OPEN INDUSTRY

ENABLING IOT

Sebastian Opitz

Head of Controlling & Innovation Dipl.-Kfm. (MSc.) in Finance & Controlling

Kontron Transportation Austria AG Lehrbachgasse 11 | 1120 Vienna | Austria \$\sqrt{+43}\) 664 60 191 1865

Sebastian.Opitz@kontron.com

IOT SOLUTIONS WORLD CONGRESS | 29-31 OCTOBER 2019

WWW.IOTSWORLDCONGRESS.COM

Dr. Vivien Dollinger, CEO ObjectBox

- MS in Computer Science
- MBA, PhD in Business
- Previously Development Director @ Koch Media
- 10+ years leading & scaling teams

www.objectbox.io

www.objectbox.io

IIoT in the railway setting - a case study

- What is Edge Computing?
- The railway setting: Challenges in railway operations
- Case Study: Kapsch IIoT railway project with ObjectBox
 - Hardware / Software Requirements
 - Fit and Scope
 - Results
- Future applications
- Q&A

IOT SOLUTIONS WORLD CONGRESS | 29-31 OCTOBER 2019

WWW.IOTSWORLDCONGRESS.COM

Where is this data going?

It is being stored and used **locally**, on the device it was created on.

This is Edge Computing.

CENTRALIZED

DECENTRALIZED

CENTRALIZED

DECENTRALIZED

MAIN FRAME **1960-1970**

CLIENT - SERVER 1980 - 2000 MOBILE – CLOUD **2005-2020**

EDGE INTELLIGENCE **2020-...**

@ObjectBox_io

CLOUD 🕩

FOG

EDGE 1

MIST

high connectivity centralized large hardware high latency

limited connectivity decentralized small hardware low latency

Market value: **18-23 billion** by 2023

CAGR: 28%

MarketsandMarkets (2019), Markets and Future (2018), Mordor Intelligence (2919), Allied Market Research (2017), bcc Research (2018)

Why now? Edge enabler

New use cases, new requirements

Offline Functionality

Data Security

Fast Responses

Cloud Costs

Bandwidth Cap

Smart Utility

Pipeline safety

- Sensors detect abnormalities
- An autonomous decision is the fastest
- A fast shutdown can safe lives and prevent money loss

Autonomy is a critical ability for pipelines to increase safety for workers and the public.

Smart Mobility

Car assistance

- Mobile = partly offline
- Independence from a constant internet connection is key to usefulness and user satisfaction

Mobile applications

Mobile apps

- Mobile apps store confidential and personal data
- data security and privacy is crucial
- e.g. banking, shopping, health applications

Data security and privacy on your phone is crucial for many mobile apps / customers.

Smart Manufacturing

Additive Manufacturing

- environmental conditions change and influence the manufacturing layers
- to adapt the manufacturing process in time, the I/O throughput is critical
- better / new process need stronger edge

Smart Building

Predictive maintenance Elevators

- Predictive maintenance is based on highfidelity data
- sending and processing alldata in the cloud easily exceeds 500k / month

Cloud costs need to be below savings gained by predictive maintenance.

Smart City

Surveillance in Smart City settings

- Cities are data hot spots
- Surveillance is high-fidelity data
- bandwidth limitations put a hard cap on adding cloud-based IoT solutions

The railway Industry – Status Quo

IOT SOLUTIONS WORLD CONGRESS | 29-31 OCTOBER 2019

The evolution of railway digitalization is advancing

Simultaneously, the impact of IoT data is accelerating

Both progressions offer huge opportunities for railways

Smart railway market is expected to grow at a CAGR of 14.83%¹ **Impact of Digitalization** Global sensor markets will reach 30.7 billion devices² Estimation for the data storage in 2020 is 2.2%² **Management of Data** Bulk of IoT data to be examined in real-time and only stored briefly²

Maintenance of Assets

Properly implementing digitalization within your company can lower the maintenance costs by up to 20%3

Estimated reduction of manual diagnostics lies by at least 60%4

Economic Value of Insights

Railway operators can optimize their railway operations and achieve close to 100% availability through data⁵

Deriving tangible business value from IoT use cases is essential

Railway customer "Pain Points"

An IIoT solution for the railway industry

Industrial IOT Solution Benefits"

Requirements for a perfect fit

Factory1 Program

Use Case #1: Remote monitoring of drain water level in tunnels

Mission Critical Data Transfer

Full Connectivity

Remote Asset Monitoring

Lower Operational Costs

Edge computing allows local data collection via existing GSM-R network

Remote monitoring of drain water levels in tunnels

Use Case #1: Remote monitoring of drain water level in tunnels

Mission critical alert for tunnel workers

In co-operation with:

Monitoring

Use Case #2: Data Connectivity for Construction Site

Mission Critical Data Transfer

Full Connectivity

Remote Asset Monitoring

Lower Operational Costs

Mission critical data transmitted using GSM-R network

Remote management

Enabling local multitechnology wireless communication

In co-operation with:

IOT SOLUTIONS WORLD CONGRESS | 29-31 OCTOBER 2019

Use Case #2: Data Connectivity for Construction Site

Construction site manager sends work orders

Workers receive work orders reliably due to increased connectivity

Case Study: Edge Sync Performance evaluation

Hardware / Software stack

Project tech specs:

- Operating systems: centOS, Android and iOS
- Language: Java

Steps:

- Replace data persistence layer with ObjectBox
- Synchronize data between IoT edge gateways and central servers
- Compare ObjectBox to alternatives

Challenges of bringing data to the edge

Data synchronization

- Synchronization != replicated data
 - → Local data, some of it must be synchronized
- Keeping data in sync is complex
 - → Concurrent edits, conflicts, ...
- HW and software capabilities of edge devices
 - → restrictions, costs, edge db re-requisite
- Multi-level sync? Device(s) <-> Gateway <-> Central
 - → just adds complexity....

- REST based APIs (or GraphQL), typically return JSON data
- MQTT: Publish/Subscribe, Queues, binary
- No standard to store returned data, e.g. custom logic to insert into a SQL database
- Simple "fetch all data" requests widely used, redundant and inefficient

Update pushes – two way

Offline support: Queuing for later

Delta synchronization

Conflict resolution

- Decentralized
- History is not linear
 - Branches introduce another dimension

- Merge operations
 - → Automatic, or manual conflict handling
- git concepts → data synchronization?
 - → Makes a pretty good starting point

- Cloud Data Synchronization
 - → E.g. Google Firestore; no Edge/Gateway mode, high vendor lock-in, costs

- Edge Data Synchronization
 - → E.g. ObjectBox; device first, Gateway&Cloud on top

Case Study – let's talk about this in practice...

- Databases evaluated for this use case
 - Couchbase (picked by customer, sync)
 - ObjectBox
- Edge Server and Gateway: Spring Boot Web App (Java)
- Edge Gateway has all local data, Server has all data
- Sensors: data drop off via REST API

Architecture overview

Kapsch **ObjectBox CORE CUBE EDGE CUBE Slim CUBE KUBE MVP KUBE MVP KUBE MVP APP** Sync & Sync IF Sync & **CRUD IF** Sync IF **CRUD IF** Sync & Sync IF **CRUD IF CRUD KPI** Block Block **CRUD KPI** Block Block **CRUD KPI** Block Block M ObjectBox DB **ObjectBox DB** ObjectBox DB W **Linux CENTOS** OS **Linux CENTOS Linux CENTOS** x86 HP server **COTS IoS CTW** Android / iOS Devices Atom processor HW 000000 Θ 00

Case Study: Edge Sync Performance evaluation

Database Performance (CRUD)

Memory resources used (RAM MB)

Processing resources used (CPU Cores; max.: 4)

Sync Performance

- Test setup: 2 nodes synced
 - Sync latency test: 1 object tree from A to B
 - Throughput test: 100,000 object trees A to B
- Couchbase results: 0.931 s / 25 s
- ObjectBox results: 0.015 ms / 0.265 s
- Factors by which ObjectBox is faster: 60 / 94

V S

Outlook: what's coming

International Railway Market

Public Transporation

Smart Mobility

DIGITALIZING INDUSTRIES

COME JOIN US!

